
Development of the numerical methods of analysis

the two-particle correlations in the ALICE

experiment at CERN LHC

MARCIN PATECKI

Engineer Thesis

Supervisor:
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Abstract

This thesis presents results and conclusions obtained by studying two-particle ∆η∆φ correlation func-

tions in proton-proton collisions at center of mass energy
√
s = 7 TeV recorded by the ALICE ex-

periment. The shape of∆η∆φ correlation function is the result of several physical phenomena like

Bose-Einstein correlation, resonances decay, photon conversion, minijets and elliptic flow. There are

also some detector effects, like limited acceptance, which also contribute to the overall shape of the cor-

relation function. My work focuses on fitting the∆η∆φ correlation functions in order to quantitatively

describe the trends of its shape as a function of multiplicity and pair transverse momentum (pT,sum). The

main goal of the work is to extract the dominant structures in the shape of∆η∆φ correlation function

in order to study their multiplicity andpT,sum dependence. This can lead to better understanding of the

physical effects in pp collisions.

Fitting the∆η∆φ correlation function is performed with the MINUIT analysis package integrated

in the ROOT environment. The procedure is based on calculating theχ2 between the proposed fitting

function and the data for given values of parameters. The task of MINUIT is to obtain the minimum value

of χ2 by finding the optimal parameters; it also provides the errors and the covariance matrix necessary

in the discussion of uncertainties.

The introduced fitting formula is composed of four modified Gaussian functions, each related to cer-

tain structure of the correlation function. Modified Gaussian functions, which are more sharp and narrow,

correspond better to the shapes seen in the data. It is also necessary to include a second order polynomial

in the fitting formula to account for acceptance effects in∆η.

As a result of my studies I obtained the dependence of the parameters of thefit on the multiplicity

and pT,sum. It allowed to quantitatively describe the contribution of different physical phenomena to the

overall shape; however, there are situations where it is difficult to distinguish the different correlation

sources.
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Chapter 1

Introduction

1.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and highest-energy particle accelerator

build by CERN, the European Organisation for Nuclear Research.It lies in a circular tunnel

of 27 km in circumference, 50 to 175 meters beneath the Franco-Swiss border near Geneva,

Switzerland. The LHC is a synchrotron which accelerates twobeams of particles in opposite

directions in separate beam pipes. It is designed to accelerate particles to collide with energies

at the center of mass up to
√
s = 14 TeV for protons and

√
s = 5.52 TeV for lead ions. There

are four main experiments at the LHC: ALICE, ATLAS, CMS, LHCb [1].

ALICE

ALICE (A Large Ion Collider Experiment) is an experiment optimised to study heavy-ion colli-

sions, especially the properties of strongly interacting matter, the phase transition to the Quark-

Gluon Plasma and the phase diagram of hadronic matter. It will be described in more details in

the next section.

ATLAS

ATLAS (A Toroidal LHC Apparatus) is, together with CMS, one oftwo general purpose exper-

iments at the LHC. The main goal of this experiment is to searchfor the Higgs bosons and the

origin of mass. It also explores physics beyond the StandardModel e.g. extra dimensions of

space, supersymmetry, evidence of the existence of dark matter and dark energy in the Universe.
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CMS

CMS (Compact Muon Solenoid), like ATLAS, is a general purpose experiment with similar to

ATLAS goals. These two experiments complement each other but are designed and optimised

in a different way to ensure cross-check of the measurements.

LHCb

LHCb (Large Hadron Collider beauty) is a specialised experiment, particularly aimed at mea-

suring the parameters of CP (charge conjugation and parity symmetries) violation in the inter-

actions of hadrons composed of beauty hadrons. It investigates the slight difference between

matter and antimatter by studying bottom quarks.

1.2 ALICE Experiment

A Large Ion Collider Experiment (ALICE) is a general-purpose detector at LHC aimed to study

heavy-ion collisions. It focuses on the physics of stronglyinteracting matter and the quark-

gluon plasma at extreme values of energy density and temperature. The experiment is also

designed to study proton-proton and proton-nucleus collisions to provide reference data for the

heavy-ion programme and address several specific strong-interaction topics for which ALICE

is complementary to the other LHC detectors.

The ALICE detector is composed of 18 different detector systems each with its own spe-

cific technology choice and design constraints, driven bothby the physics requirements and

the experimental conditions expected at LHC. The most uniquefeatures of the experiment are

tracking and particle identification (PID) over a large momentum range: from few aMeV/c up

to over100GeV/c. This leads to the possibility of studying physics fromsoft (non-perturbative

QCD) tohard (perturbative QCD, likejets andhigh-pT particle production phenomena).

The experiment is built and is maintained by a collaborationof more than 1000 members

from 105 Institutes in 30 countries. Three Polish institutes are involved in the collaboration:

Warsaw University of Technology, Andrzej Soltan Institutefor Nuclear Studies (from Swierk),

and Institute of Nuclear Physics of the Polish Academy of Sciences (from Cracow) [4].



Chapter 2

∆η∆φ correlation function

∆η∆φ correlation function is the analysis technique based on theangular distribution of par-

ticles created in collision. The final shape of the system in the momentum space is a re-

sult of many physical mechanisms that affects the trajectories of the particles. Studying the

two-particle correlations in the∆η–∆φ space allows to reveal those mechanisms. The cor-

relation sources, observables and the construction of the∆η∆φ correlation function will be

described in this chapter.

2.1 Observables

Pseudorapidityη

Rapidity is a popular quantity in relativistic physics used alternatively to velocity for measuring

motion. In case of particle collisions it is defined relatively to the beam axis as:

y =
1

2
ln

(

E + pLc

E + pLc

)

, (2.1)

wherepL is the component of the momentum along the beam axis andE is the energy of a

particle.

Pseudorapidity is an angular variable used to approximate the rapidity of a particle when its

mass are not known. It is defined as:

η = − ln

[

tan

(

θ

2

)]

, (2.2)

whereθ is the angle between the particle momentump and the beam axis.

In terms of momentum the pseudorapidity variable can be written as:

η =
1

2
ln

( |p|+ pL
|p| − pL

)

, (2.3)
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Figure 2.1: Definition ofθ angle.

wherepL is the component of the momentum along the beam axis. In relativistic situation

when the momentum of a particle is much bigger than its mass (p >> m), it is also a good

approximation of the rapidityy:

y =
1

2
ln

(

E + pL
E − pL

)

. (2.4)

One can ask why theη variable is used instead of the angleθ describing the directional dis-

tribution of the particles detected after the collision. The reason is that differences in pseudora-

pidity are Lorentz-invariant under boosts along the beam axis. The difference of pseudorapidity

is measured in case of∆η∆φ correlation function:

∆η = η1 − η2. (2.5)

Azimuthal angle φ

The azimuthal angleφ is the angle between the positivex-axis and the projection of the mo-

mentum vector onto thexy-plane (see figure 2.2):

φ = arctan

(

py
px

)

. (2.6)

Figure 2.2: The azimuthal angleφ definition.

The difference of the azimuthal angle between two particlesis defined as:

∆φ = (φ1 − φ2)mod2π. (2.7)
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Such definition of the∆φ variable means that it insensitive to the direction of the coordinate

system on the XY plane.

2.2 Construction of∆η∆φ correlation function

The construction of the∆η∆φ correlations is based on calculating the difference in pseudo-

rapidity η and azimuthal angleφ for every pair of particles registered in the detectors after

the collision. Then such count fills the two-dimensional histogram with∆η and∆φ on axes.

This procedure is repeated for millions of events run in the same conditions to ensure sufficient

statistics. As a result of this analysis we get theSignal histogram (see figure 2.3).

Figure 2.3: The∆η∆φ Signal andBackground histograms.

The shape of theSignal histogram contains not only information about correlations between

pairs of particles but also background information coming frome the single particle acceptance.

In order to eliminate this background contribution we construct theBackground histogram. It

is build by taking into account pairs of particles coming from different events; so, we expect no

physical correlation between them. An example of theBackground histogram is presented at

figure 2.3. Its characteristic triangular shape in variable∆η is a result of the convolution of two

uniform distributions.

Dividing Signal by Background gives the final shape of the correlation function. Because of

the different amount of entries in both histograms it is necessary to scale theSignal-Background

ratio in the following way:

R (∆η,∆φ) =
N bg

pairs

N sig
pairs

S (∆η,∆φ)

B (∆η,∆φ)
. (2.8)

As a result the final, characteristic shape of the∆η∆φ correlation function is obtained. An

example is presented in figure 2.4.
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Figure 2.4: The∆η∆φ correlation function.

2.3 Correlation sources

The∆η∆φ correlation function is the angular distribution of the trajectories of pairs of particles.

Several physical phenomena affect the trajectories of produced particles giving the final shape

of the∆η∆φ correlation. The most important correlation sources are: minijets, Bose-Einstein

correlations, elliptic flow, resonance decays and photon conversion. Each of those has an unique

structure in∆η∆φ space which will be shortly described in this section.

Minijets

One can consider minijet as a stream of particles. The most frequent case are the so called

back-to-back jets – two streams of particles going in opposite directions. There are two possible

options, for analysing jets see figure 2.5:

1. Pairs of particles going in the same direction. The difference in anglesθ andφ is close

to 0; so, pairs form a minijet peak are centred at (0,0) – laterreferred to as thenear-side

peak.

2. Pairs of particles, which go in opposite directions (back-to-back jet). The distribution in

azimuthal angleφ is close toπ, but there is no strong correlation in∆θ; so,∆η is almost

uniform. As a result we observe a wide ridge at∆φ = π – later referred to asaway-side

ridge.
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Figure 2.5: The contribution of the minijets to the∆η∆φ correlation function [5].

Bose-Einstein correlations

According to the Bose–Einstein statistics, identical particles (bosons) are likely to be produced

together and emitted in similar direction with small∆η and∆φ. It gives an additional contri-

bution to thenear-side peak.

Elliptic Flow

In general, the source emitting particles can be anisotropic, which causes correlations among

particles. Elliptic flow is a collective effect originatingfrom source anisotropy which adds a

cos(2∆φ) type oscillation to the overall shape. It is observed in heavy-ion collision, but not

expected in proton-proton collisions.

Resonances

Resonances decay isotropically in their own reference frame. If the decay occurs while moving

with certain velocity, all created particles go forward in asimilar direction, and with small

difference in∆η and∆φ; so, they contribute to thenear-side peak.

Photon conversion

Electrons and positrons originating from conversion of photons go in the same direction, with

small angle differences; therefore, they produce a very sharp near-side peak.

Momentum conservation

Conservation laws ensure that for all particles going in similar direction, there would be also

a number of particles going in the opposite direction. The momentum conservation law for

minijets is actually taken into account in thenear-side peakaway-side ridge.
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Overall picture

The final shape of the∆η∆φ correlation function is a mixture of all the above mentionedcorre-

lation sources. Figure 2.6 shows all discussed structures referring to the corresponding sources.

Figure 2.6: Contributions from different correlation sources to the∆η∆φ correlation function

(7 TeV pp collision data).
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Experimental setup and datasets

3.1 Detectors

The∆η∆φ analysis requires the precise measurement of the production angles of particles. For

that purpose three ALICE subsystems were used: Inner Tracking System (ITS), Time Projection

Chamber (TPC) and VZERO. The full description of all the ALICE subdetectors can be found

in [4].

3.1.1 Inner Tracking System

The Inner Tracking System (ITS) is the innermost subdetector composed of three different types

of silicon detectorsSilicon Pixel Detector (SPD), Silicon Drift Detector (SDD) andSilicon Strip

Detector (SSD). The detector layout is shown in figure 3.1.

Figure 3.1: The Inner Tracking System [4].

• Silicon Pixel Detector (SPD) [3] is essential in determining the position of the primary

vertex. It is built of hybrid silicon pixels which consist ofsilicon detector diodes with
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a thickness of200 µm. The SPD covers pseudorapidity ranges|η| < 2 and |η| < 1.4

for the inner and outer layers respectively, for particles originating from the center of the

detector.

• The Silicon Drift Detector (SDD) [3] consist of a300 µm thick layer of homogeneous

high-resistivity silicon and covers the region|η| < 0.9. It provides energy-loss informa-

tion for the particle identification thanks to its analog readout.

• TheSilicon Strip Detector (SSD) [3] is composed of silicon micro-strips covering|η| <
0.9. The strips on two sides allow two-dimensional measurements of the track position

together with an energy-loss measurement for the particle identification.

3.1.2 Time Projection Chamber

TheTime Projection Chamber (TPC) [6] is the main tracking detector used to provide informa-

tion about charged particles; their momenta, vertices positions and particle identification. It is

located between radii of0.85 m and2.5 m (sensitive volume) and has a length of5 m – the

biggest TPC in the World. The detector is filled with90 m3 Ne-CO2-N2 gas mixture. A drift

field of 100 kV stretches between the central electrode (which is located at z = 0) and the two

readout planes atz = 2.5 m andz = −2.5 m. A schematic picture of the TPC is shown at

figure 3.2.

The readout of the signal is performed by the 570132 pads of 3 different sizes which form

the cathode of multi-wire proportional chambers located atthe TPC end caps. The end caps are

segmented into 18 trapezoidal sectors. These sectors are divided radially in two chambers with

varying pad sizes, optimised for the radial dependence of track density. Pads are organised in

159 rows radially.

Tracking particles it the TPC is limited in the pseudorapidity range of|η| < 0.9 for full

radial length and up to|η| < 1.5 for 1/3 radial length. The range of transverse momenta at the

nominal magnetic field of0.5 T is from about200 MeV/c up to100 GeV/c. The momentum

resolution of the tracks is better than 2.5% for tracks with amomentum below4 GeV/c.

3.1.3 VZERO

TheVZERO (also referred to asV0) [7] is a small-angle detector consisting of two arrays of 32

scintillator counters, each installed on both sides of the ALICE interaction point: VZERO-A at

z = 3.3 m, covering the pseudorapidity range2.8 < η < 5.1, and VZERO-C atz = 0.9 m,

covering the pseudorapidity range−3.7 < η < −1.7.

The main task of the VZERO system is to provide the onlineLevel 0 centrality trigger

for ALICE by setting a threshold on deposited energy and to provide a background rejection
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Figure 3.2: The Time Projection Chamber [6].

capability (contribute to the rejection of asymmetric beam-gas events). The time resolution of

this detector is better than1 ns. Its response is recorded in a time window of±25 ns around

the nominal beam crossing time.

3.2 Datasets

The data used for this analysis come from the LHC proton-proton runs registered in 2010 and

in the first half of 2011 at center of mass energy
√
s = 7 TeV. There were 530 millions of

analysed events.

3.2.1 Multiplicity ranges

As the multiplicity of the eventNch we consider the total number of measured, charged particles

in the detector acceptance range|η| < 1.2. All the events from the pp collision data at
√
s =

7 TeV were divided into eight multiplicity ranges. The division was made in such way that in

each multiplicity range the number of like-sign pairs is comparable. All the ranges are listed in

table 3.1. They are also shown in the raw multiplicity distribution plot in figure 3.3.



3.2.2.pT,sum ranges 14

Range Nch Nch/ < Nch > No. events×106

1 2-11 0.15-0.8 322.7

2 12-16 0.9-1.2 85.0

3 17-22 1.2-1.6 61.2

4 23-28 1.7-2.1 37.9

5 29-34 2.2-2.6 17.9

6 35-41 2.7-3.2 8.5

7 42-51 3.2-4.1 3.8

8 52-151 4.2-10.8 0.7

Table 3.1: Multiplicity ranges for pp collision data at the energy of
√
s = 7 TeV.

Figure 3.3: Multiplicity distribution for the
√
s = 7 TeV pp collision data with multiplicity

ranges in colors.

3.2.2 pT,sum ranges

The quantity related to transverse momentum of the pair of particles ispT,sum, defined by the

equation:

pT,sum = |pT,1|+ |pT,2|. (3.1)

Such definition makes this quantity intensive to the∆φ variable. The introducedpT,sum

ranges are presented in table 3.2.2. ThepT ,sum distribution plot for the
√
s = 7 TeV data is

shown in figure 3.4.

3.2.3 Charge dependence

The analysis was performed on three combination on charge within a pair of particles: positive

like-sign (++), negative like-sign (- -), unlike-sign (+-). The difference between like-sign and

unlike-sign pairs is expected to be observed at least because of the femtoscopic effects which

occur only for identical particles.
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Range pT -sum[GeV/c]

1 0.0-0.75

2 0.75-1.5

3 1.5-2.25

4 2.25-100

Table 3.2:pT ,sum ranges for the
√
s = 7 TeV pp collision data.

Figure 3.4: pT,sum distribution for the
√
s = 7 TeV pp collision data withpT,sum ranges in

colors.
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Fitting procedure

4.1 Introduction

The result of the∆η∆φ correlation function is a 2D surface in 3D space, with the unique

shape which is the result of many physical phenomena that occur just after the collision. In

this research we look for an analytical function that describes this shape. Inventing the formula

of such function is not an easy task - it has to be relatively simple and contain the minimum

number of parameters. Those parameters are generally unknown, but it is possible to obtain

them by minimising the difference between experimental correlation function and the analytical

function.

Performing the minimisation of the multi-parameter function is, in gerenal, a complicated

problem. Even if the theoretical model is constructed well,the analytical function still can

have many local minima that are potential solutions of the minimisation process. The physical

predictions about parameters help to reach proper solutionthat fit best to the theory.

In this work fitting the analytical function is based onMINUIT, which is a numerical min-

imisation program originally written in the FORTRAN programming language by the CERN

physicist Fred James in the 1970s. Later it was re-written toC++ and adapted to the ROOT

environment. The program searches for minima in a user-defined multi-parameter function and

analyse the shape of the function around the minimum. The principal application is foreseen

for statistical analysis, working onχ-square or log-likelihood functions, to compute the best fit

parameter and uncertainties, including correlations between the parameters.

The MINUIT system involves several minimising algorithms.In the case of this work, the

MIGRAD method was used.
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4.2 MIGRAD algorithm

MIGRAD is a minimisation subroutine based on a variable metric method by Fletcher [8]. It

is considered to be the most efficient and complete single method, recommended for general

functions. The algorithm is characterised by the followinggeneral approach [9]:

1. The vector of parametersX is filled by starting values given by user. According to those

values, the first derivativesGS are computed. The covariance matrixV may be only a

diagonal matrix or even the unit matrix in the first step.

2. New vector of parameters is computedX′ = X−αV·GS, finding theα which minimises

theF (X− αV ·GS). For givenX′ the new gradientGS′ is calculated.

3. The covariance matrixV is updated by the general formV′ = V+f(V,X,X′,GS,GS′).

ThenGS is replaced byGS′, X by X′, andV by V′ and steps (1) and (2) are repeated

until some convergence criteria are satisfied.

The ”estimated distance to minimum” (EDM) is used as the convergence criteria. It is calculated

by:

EDS = GST ·V ·GS. (4.1)

4.3 Chi-square function

Minimising algorithm works on theχ2, defined by:

χ2(X) = c
n
∑

i=1

(f(∆ηi,∆φi,X)− ǫi)
2, (4.2)

wheref is a user-defined multi-parameter fitting function,ǫi is the measured value andX is the

vector of free parameters being fitted. As a result of the minimisation of theχ2 value we obtain

the parameters that describe the dataset best.

4.4 Residual histogram

Because the analytical function used for fitting is unknown, we need a tool to check and improve

many of the proposed functions. Using only theχ-square value is insufficient – it indicates only

if the fitting is correct or not without any insight on possible better solutions. For that reason

theResidual histogram is used. The data of the∆η∆φ correlation function are stored in two-

dimensional histogram (ROOT’sTH2D object). According to the used fitting function and

obtained parameters the correspondingFitted histogram is created. TheResidual histogram is

a difference between them and is graphically displayed in order to indicate the improvements

in the fitting function. The fitting is correct if a flatResidual histogram is obtained.
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4.5 Fitting formula

In chapter 2 three main structures in the shape of the∆η∆φ correlation function are distin-

guished:near-side peak,away-side ridge andlongitudinal ridge. Fitting formula is intended to

reproduce all those structures.

4.5.1 The combination of the Gaussian functions

The first attempt on finding the right fitting function was to use the combination of the Gaussian

functions. See equation 4.3.

C(∆φ,∆η) = MM exp

(

−
(

∆φ2

2σ2

Mφ

+
∆η2

2σ2

Mη

))

+MM exp

(

−
(

(∆φ− 2π)2

2σ2

Mφ

+
∆η2

2σ2

Mη

))

+ MS exp

(

−
(

∆φ2

2σ2

Sφ

+
∆η2

2σ2

Sη

))

+ MA exp

(

−
(

(∆φ− π)2

2σ2

Aφ

))

+MA exp

(

−
(

(∆φ+ π)2

2σ2

Aφ

))

+ ML exp

(

−
(

∆η2

2σ2

Lη

))

+ N, (4.3)

whereMM , σMφ andσMη are parameters of thenear-side Gaussian, meant to describe the

minijet correlation structure,MS, σSφ andσSη are meant to describe thenear-side femtoscopic

correlations,MA andσAφ are meant to describe theaway-side ridge and momentum conserva-

tion, andML, σLη are meant to describe the longitudinal ridge. In addition,N is the overall

normalisation. The∆φ variable refers to the diffenerce in the polar angle which isperiodic, so

all the components of the function with the∆φ variable also have to be periodic with period2π.

Figure 4.1 shows the visualisation of data correlation function, the fitted function and the

residual histogram. The structures in residual histogram prove that proposed formula does not

fit to the data well. The radial shape around the point (0,0) suggest that thenear-side peak in

the data correlation function has different slope than result of the fitting function. It means that

the formula require some modification of the shape.

4.5.2 The combination of the modified Gaussian functions

The shape of the Gaussian functions was modified by additional exponents to ensure better fit

to the data. See the new fitting formula on equation 4.4.
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Figure 4.1: The example of results for function 4.3.

C(∆φ,∆η) = MM exp

(

−
(

∆φ2

2σ2

Mφ

+
∆η2

2σ2

Mη

)eM
)

+MM exp

(

−
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+ N, (4.4)

whereeM , eA andeL are the additional exponents that modify the Gaussian functions. The

rest of the parameters is consistent with equation 4.3. The influence of the exponent on the

shape of Gaussian function is shown in figure 4.2. Further studies proved that modification is

necessary only in case of the minijet peak, the other exponents are fixed to 1.

Figure 4.3 proves that the modified Gaussian functions correspond to the data much better

than it was in the previous case. The residual histogram is almost flat, except of the ”wings”

structure in the large∆η region. The simulations have shown that its shape differs with cuts

proceeded on data. It indicates that those ”wings” are a result of detector acceptance effects.
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Figure 4.2: The influence of exponent on the shape of the Gaussian function.

Figure 4.3: The example of results for function 4.4.

4.5.3 The combination of the modified Gaussian functions with the second

order polynomial function

The wing structures were accounted for by adding the second order polynomial function to the

fitting formula, which is given on equation 4.5.
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whereP is the parameter of the second order polynomial function. The formula 4.5 is the

final stage of obtaining the correct fitting function, which is proved on figure 4.4.

Figure 4.4: The example of results for function 4.5.



Chapter 5

Developed software tools

In this chapter the program used for fitting the experimental∆η∆φ correlation function is

shortly described. It was written in the ROOT environment [2] and is based on the two methods:

fit(TH2D*) andfitppmb(int).

Format of the experimental data

The experimental data come from the analysis done by Malgorzata Janik and Lukasz Graczykowski.

The histograms (TH2D objects) with thesignal andbackground (see chapter 2) data of the∆η∆φ

correlation function for each multiplicity andpT,sum case are stored in the.root file. Read-

ing form the.root file and creating the final correlation function is performedin the method

fitppmb(int).

The fitppmb(int) method

This is the main method which is intended to perform the following tasks:

• read thesignal andbackground histograms from the.root file,

• create the histogram with the∆η∆φ correlation function,

• act thefit(TH2D*) method on the histogram with the∆η∆φ correlation function,

• write the results to the.root file.

Creating the∆η∆φ correlation function

The argument of thefitppmb(int) method is used to choose the charge of particles within

a pair. There are three possibilities: both particles are positively charged (plus), both particles

are negatively charged (minus) and pairs of particles with opposite charge (mixed).
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switch(namech){

case 0: name = "plus"; break;

case 1: name = "minus"; break;

case 2: name = "mixed"; break;

}

Then the data is read from the proper.root file. The final∆η∆φ correlation function

is obtained by dividingsignal by background and performing the scaling, which is necessary

because of different number of entries insignal andbackground histograms.

double scale_den=((TH2D*)gDirectory->Get(Signal)->Integral();

double scale_num=((TH2D*)gDirectory->Get(Background)->Integral();

TH2D* num = (TH2D*)gDirectory->Get(Signal);

num->Divide((TH2D*)gDirectory->Get(Background));

num->Scale(scale_den/scale_num);

After creating thenum histogram with the∆η∆φ correlation function thefit(TH2D*)

method is run.

fit(num);

The last task of thefitppmb(int) method is to create the plots (TH1D objects) of pa-

rameters which are the result of thefit(TH2D*) method and save them to the.root file.

TFile *out = new TFile(Form("out.fit.%s.root",name),"RECREATE");

out->cd();

hNormalization->Write();

hMinijetPeakMagnitude->Write();

hMinijetPeakPhi->Write();

hMinijetPeakEta->Write();

hMinijetPeakExp->Write();

hSharpPeakMagnitude->Write();

hSharpPeakPhi->Write();

hSharpPeakEta->Write();

hAwaySideMagnitude->Write();

hAwaySidePhi->Write();

hAwaySideExp->Write();

hLongRidgeMagnitude->Write();

hLongRidgeEta->Write();

hLongRidgeExp->Write();

hParabola->Write();
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The fit(TH2D*) method

This method is intended to perform the fitting of the analytical function (TF2 object) to the

∆η∆φ correlation function. At first, it creates the fitting function according to the formula 4.5.

const char *form = "[0]

+ [1]*exp(-TMath::Power(((x-PI)*(x-PI))/(2*[10]*[10]),[12]))

+ [1]*exp(-TMath::Power(((x+PI)*(x+PI))/(2*[10]*[10]),[12]))

+ [2]*exp(-TMath::Power(x*x/([3]*[3]*2)+y*y/([4]*[4]*2),[13]))

+ [2]*exp(-TMath::Power((x-2PI)*(x-2PI)/([3]*[3]*2)

+ y*y/([4]*[4]*2),[13]))

+ [5]*exp(-(x*x)/(2*[6]*[6])-(y*y)/(2*[7]*[7]))

+ [8]*exp(-TMath::Power(y*y/(2*[9]*[9]),[11]))

+ [14]*y*y";

fitfun = new TF2("fitfun",form);

Then the starting values of parameters and limits are defined.

// Minijet

fitfun->SetParameter(2, 0.4);

fitfun->SetParameter(3, 0.7);

fitfun->SetParameter(4, 0.40);

fitfun->SetParameter(13,0.6);

// Sharp peak

fitfun->SetParameter(5, 0.5);

fitfun->SetParameter(6, 0.11);

fitfun->SetParameter(7, 0.17);

// Long ridge

fitfun->SetParameter(8, 0.01);

fitfun->SetParameter(9, 0.8);

fitfun->SetParameter(11, 1.0);

// Away-side ridge

fitfun->SetParameter(1, 0.08);

fitfun->SetParameter(10, 1.0);

fitfun->FixParameter(12, 1.0);

// Parabola

fitfun->SetParameter(14, 0.0);

// Limits
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fitfun->SetParLimits(0, 0.60, 1.02);

fitfun->SetParLimits(3, 0.1, 0.8);

fitfun->SetParLimits(4, 0.1, 1.0);

fitfun->SetParLimits(13, 0.35, 0.75);

fitfun->SetParLimits(5,0.1, 10.0);

fitfun->SetParLimits(6,0.1, 0.3);

fitfun->SetParLimits(7,0.1, 0.3);

fitfun->SetParLimits(8, 0.0, 100.0);

fitfun->SetParLimits(9, 0.4, 2.55);

fitfun->SetParLimits(11, 0.0, 1.5);

fitfun->SetParLimits(1, 0.0, 100.0);

fitfun->SetParLimits(10, 0.6, 3.0);

The next step is to run theMINUIT algorithm which looks for the optimum values of the

parameters.

inhist->Fit(fitfun,"WIRN","");

WIRN are the options of the fit:

• ”W” Set all errors to 1

• ”I” Use integral of function in bin instead of value at bin center

• ”R” Use the range specified in the function range

• ”N” Do not store the graphics function, do not draw

The last task of this method is to create the residual histogram.

for (int ix=1; ix<=res->GetNbinsX(); ix++)

for (int iy=1; iy<=res->GetNbinsY(); iy++){

vh = inhist->GetBinContent(ix, iy);

vf = fitfun->Eval(inhist->GetXaxis()->GetBinCenter(ix),

inhist->GetYaxis()->GetBinCenter(iy));

res->SetBinContent(ix, iy, vh-vf);

}

At the end the fitted function and the residual histogram are written to the proper.root

file.

canfit->SaveAs(Form("canfit.%s.root",inhist->GetTitle()),"RECREATE");

The figures 4.1, 4.3, 4.4 and all the figures in the chapter 6 areobtained by described in this

chapter software tools and stored in the.root files.



Chapter 6

Fitting results

The parameters of the fit are visualy presented in the plots inthe multiplicity and transverse mo-

mentum dependence. They are shown together with the plots ofthe∆η∆φ correlation functions

in order to easily associate fit results with general trends in the data. In a few situations, when

the structures of the correlation functions are very small,the parameters reach the values near

to zero which causes enormously high error bars. Symbols on plots correspond to the symbols

of fitting formula 4.5, we repeat:

• MM , σMφ, σMη, eM – parameters of minijet peak,

• MS, σSφ, σSη – parameters of peak describing femtoscopic effects,

• MA, σAφ, eA – parameters of away-side ridge,

• ML, σLη, eL – parameters of longitudinal ridge,

• P – parabola parameter,

• N – normalisation.

In legend:

• ”plus” means pairs of positively charged particles,

• ”minus” means pairs of negatively charged particles,

• ”unlike-sign” means pairs with particles of opposite charge.

6.1 Multiplicity dependence of the fit parameters

In this chapter the multiplicity of the event is representedas a root of the third degree of a

number of detected charged particles per the unit of pseudorapidity. Further it will be simply

called multiplicity.
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Energy
√
s = 7 TeV

Observations, figure 6.1:

• Minijet peak has the same magnitude for like and unlike-signpairs, but is wider for

unlike-sign. Exponent is much lower than 1, which makes the peak more sharp than

non-modified Gaussian,

• Away-side ridge for unlike-sign pairs is a bit bigger than for like-sign pairs, which is

consistent with the message of minijet near-side peak (because minijet peak should be

related with away-side ridge),

• Longitudinal ridge exist only for lowest multiplicity and unlike-sign particles,

• Femtoscopic effects are included only in case of like-sign pairs and are lowering with

multiplicity,

• ”Wings”, which we relate with acceptance effects, are lowering with multiplicity,

• Near-side peak for negatively charged pairs is higher than for positively charged pairs.

6.2 Transverse momentum dependence of the fit parameters

The shape of correlation function varies significantly inpT,sum dependence, especially for low

pT,sum. This section involves plots describing this variation. Most significant in this investiga-

tion is the relation between minijets and Bose-Einstein effects, which are expected to be easy to

disentangle in those circumstances.

Energy
√
s = 7 TeV

Observations, figure 6.2:

• big difference between like-sign and unlike-sign especially for low pT,sum. It is associated

with femtoscopic effects expected for like-sign pairs,

• femtoscopic effects lowering withpT,sum for like-sign pairs,

• minijet peak and away-side ridge rising withpT,sum both for like-sign and unlike-sign

pairs,

• small longitudinal ridge observed only for lowpT,sum,

• negligible ”wings” effects.
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Figure 6.1: Multiplicity dependence at
√
s = 7 TeV.
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Figure 6.2:pT,sum dependence at
√
s = 7 TeV.



Chapter 7

Analysis of uncertainties

This chapter presents the analysis of uncertainties by studying many sources of the systematic

errors.

7.1 Polarity of magnetic field

Magnetic field fills the detector in order to bend the trajectories of particles. Generally it is

one direction of magnetic field and two possible senses, opposite to each other. In the ideal

detector observables should not depend on the sense of magnetic field. However, if we consider

additional influences e.g. external magnetic field or detector response, then some variation may

be observed. The results of this investigation are shown in figure 7.1. The difference between

the fit values for opposite senses of magnetic field is a contribution to the systematic error.

7.2 Periods of data collection

LHC is a long term project; so, stability of the detectors is avery important factor. A com-

parison of the fit parameters coming from different periods of data collection has been done to

investigate the time variation of the results. According tothe results shown in figures 7.2 there

is no time dependence of the fit parameters and the only difference comes from different senses

of the magnetic field.

7.3 Pseudorapidity range

The detectors used in the experiment, and especially the TPCwhich is the most important in

∆η∆φ, cover limited range of pseudorapidity. For|η| > 1.5 new structures appear so called

”wings effect” which may affect fit the parameters. To check this influence the fitting procedure

was performed on data with different pseudorapidity rangesand it turn out that there is no
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Figure 7.1: Comparison of fit parameters for both senses of magnetic field and overall data.

influence on fit parameters in the investigated pseudorapidity ranges. The results are shown in

figures 7.3 and 7.4.

7.4 Number of TPC clusters

The minimum number of TPC clusters associated to the track was set to 70 (maximal value

of the associated clusters is 159, which is related to the total number of padrows in the TPC

detector). We studied the influence of changing this setup to60 and 80 to observe the variation

of fit parameters. Plots on figure 7.5 show that there is no significant influence.
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Figure 7.2: Comparison of fit parameters for different periods and like-sign pair particles.

7.5 Parameters limits and starting values

Depending on different starting parameters and parameterslimits the result of the fit may vary.

The reason is that the chi-square function, which is minimised in order to get the best fit, may

have several local minima (fit solutions). The multi-dimensional space of parameters has re-

gions leading to different solutions so it is essential to choose the right starting parameters.

Limits are necessary to avoid mathematically correct, but physically meaningless solutions.

The expectation for the a correct solution is that small changes of the starting parameters and

limits will not affect the final result of the fit. The small difference in result of the parameters is

considered as a contribution to the statistical errors.

Figures 7.6 and 7.7 show that the solution is stable – 10% change of starting parameters and

limits generally does not affect the final fit parameters.
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Figure 7.3: Comparison of fit parameters for differentη ranges and like-sign pair particles.
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Figure 7.4: Comparison of fit parameters for differentη ranges and unlike-sign pair particles.
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Figure 7.5: Comparison of fit parameters for different numberof TPC clusters.
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Figure 7.6: Comparison of fit parameters for 10% change of starting parameters.
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Figure 7.7: Comparison of fit parameters for 10% change of parameters limits.



Chapter 8

Conclusions

This thesis is a part of research done during my stay at CERN in summer 2011. It involves the

results of fitting the∆η∆φ correlation function in the proton-proton collisions at center of mass

energy
√
s = 7 TeV recorded by the ALICE experiment.

Developing the numerical methods of analysing and fitting the correlation functions, based

on the ROOT environment was the main effort of this work. Another task was to find the proper

fitting formula. Finally it turned out that formula composedof the modified Gaussian functions

and the second order polynomial function is sufficient. Advanced methods of minimisation

based on MIGRAD algorithm allowed to obtain the parameters ofthe fitting formula.

The final shape of the residual histograms proves that fittingworks well for multiplicity and

pT,sum dependence. Observations of the behaviour of fit parametersallowed to draw following

conclusions:

• the hypothesis of the existence of the minijets correlations was confirmed,

• the difference between same-sign and unlike-sign correlation function confirms the exis-

tence of the femtoscopic effects,

• all the structures in the∆η∆φ correlation function are decreasing with multiplicity, where

the main contribution comes from the minijets correlationsand the femtoscopic correla-

tions. In case of the minijets, for the high multiplicity events, we have many minijets

produced in one collision; therefore different minijets become background for each other

and the correlation per pair decreases. The fact of the decreasing femtoscopic correlation

with multiplicity was studied and described in details in [10],

• the studies in thepT,sum dependence allowed to distinguish the correlations comingfrom

minijets and femtoscopy. For lowpT,sum dominant contribution to the near-side peak are

given by the femtoscopic effects, which are decreasing withpT,sum, while minijet effects

are growing withpT,sum,



39

• near-side peak has non-Gaussian shape. Gaussian function modified by an additional

exponent reproduces this shape well,

• longitudinal ridge is observed only in case of unlike-sign pairs of particles and low mul-

tiplicity,

• tendencies of minijet-peak and away-side ridge are directly related. It indicates the same

source of those structures - production of the minijets.
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