Collimation dedicated MD <u>Observations</u>

D. Demetriadou, P. Hermes, V. Kain, A. Lasheen, <u>M. Patecki</u>, F. Van Der Veken

Motivation

- Slow losses contribute the most to flat bottom losses
- Origin of these losses is unknown:
 - Particles close to the separatrix that fall out of the bucket?
 - Tight aperture?
 - Transverse tails?
 - Betatronic diffusion?
 - Re-population of tails? Betatronic or off-momentum?

MD overview

1) Scrape tails at two locations, independently, with different fills:

- TIDP, off-momentum tails:
 - reached by an orbit bump;
 - TIDP inner aperture ~40mm from the beam axis;
 - Max bump amplitude of about 30mm correctors strength ok.
- TCSM, betatron tails:
 - jaws at 30mm;
 - reached by an orbit bump.

2) Close the bump / retract the collimator.3) Scrape again to check tails re-population.Observe BCT and BLMs.

	β _x [m]	$(\beta_x \epsilon_x)^{1/2}$ [mm]	D _x [m]	D _x δ _{1σ} [mm]	D _x δ _{bh} [mm]	(βε + ($D_x \delta_{bh}$) ²) ^{1/2} [mm]
TIDP	93.7	2.5	2.8	4.2	10.6	10.9
TCSM	38.1	1.6	-0.4	-0.6	-1.5	2.2

BLM signal

BLM variables used:

BLRSPS_BA1:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_BA2:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_BA3:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_BA4:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_BA5:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_BA6:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_LSS1:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_LSS2:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_LSS4:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_LSS5:ExpertAcquisition:beamLossMeasurements_gray BLRSPS_LSS5:ExpertAcquisition:beamLossMeasurements_gray

- Integrated value
- Noise, difficult to calculate the derivative

How can I get instantaneous loss signal?

-12mm-bump @ TIDP (low energy side)

Beam touch at ~10mm:

- Defined by a change of slope of intensity
- Rather simplistic algorithm to detect it. Sometimes gets a little lost, but it's fine most of the time.

BLM @ TIDP active

Cross-check with cleaning simulations

- A similar scenario was simulated for the studies on the SPS off-momentum collimation system design.
- A satisfactory agreement between simulation and measurement is observed.

 Details of the SPS off-momentum collimation system design: https://doi.org/10.1103/PhysRevAccelBeams.24.093002

Two bumps of -14mm @ TIDP


```
Two bumps of -14mm @ TIDP
```


Two bumps of -16mm @ TIDP

Two bumps of -18mm @ TIDP

Two bumps of -20mm @ TIDP

Two bumps of -20mm @ TIDP with longitudinal blow-up

One bump of -18mm @ TIDP long max. amplitude

One bump of -18mm @ TIDP long max. amplitude with longitudinal blow-up

One bump of -20mm @ TIDP long max. amplitude

Two bumps of 3mm @ TCSM (low energy side)

Two bumps of 4mm @ TCSM

Two bumps of 5mm @ TCSM

Two bumps of 6mm @ TCSM

Two bumps of 8mm @ TCSM

Two bumps of 9mm @ TCSM

Two bumps of 9mm @ TCSM with longitudinal blow-up

Two bumps of -4mm @ TCSM (high energy side)

Two bumps of -6mm @ TCSM

Two bumps of -7mm @ TCSM

Two bumps of -7mm @ TCSM with longitudinal blow-up

TIDP vs. TCSM

t [ms]

arb.

æ sigr

BLM

TIDP vs. TCSM

t [ms]

-0.012

- 0.010 🗹

. | arb | 800.0 -

ated BLM

integr

- 0.002

TIDP vs. TCSM

-0.0150

- 0.0125 🗖

- 0.0100 🛓

- 0.0075

- 0.0050

- 0.0025

TIDP w/ and w/o longitudinal blow-up

TCSM right vs. left jaw

20000

25000

- 0.0 200 rated BLM sign

ntegr

-0.01

40020.BTS_QF

42708.ILS_QD -50020.BTS_QF -52020.BTS_QF_TCSM -

5000 -

10000

00051 t [ms]

TCSM right vs. left jaw

t [ms]

TCSM right vs. left jaw

Summary

- This presentation summarizes all relevant measurements taken during the dedicated MD on 20/07/2022.
- The beam was successfully scraped at both TIDP (high dispersion) and TCSM (low dispersion).
- Re-population of tails is observed in both cases.
- Losses at the TIDP with a single bump are in a good agreement with cleaning simulations.
- At this moment it is difficult to conclude the nature of losses based on this MD only.
 - Any suggestions of what data / analysis could be included into this study?
 - Or maybe it can be combined with other observations?
- All the data and plots are available in: https://cernbox.cern.ch/index.php/s/7jziEsCUNHeN6VS
 - Data in python .pickle format, organized in python dictionaries (rather intuitive to re-use).
- Many thanks to all people who contributed to this MD, mostly: Alex, Hannes and Verena!